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Task: Reduce Magnetic noises inside the Mu-metal shield

Challenges:

● Initial use of Independent Component Analysis (ICA) had suboptimal 
results.

● Machine learning for blind source separation is too complicated to 
achieve

Current Focus:

● Shift to dynamic compensation techniques.
● Offers a promising direction for reducing noise.

Motivation



Noises are external at sub 1Hz

6 compensation coils, 2 along each axis

Up to 30 fluxgate magnetometers

PI feedback control loop

Compensating power increases with more 
detectors

Implemented with 1 coil and 1 detector

Dynamic Compensation
Overview



Dynamic Compensation
Proportionality factor matrix

Each fluxgate sensor has a linear response 
to current changes in each of the six coils. 
Proportionally factor matrix defined as:

Has unit of nT/A
The compensating current is calculated by 
inverting M 
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Dynamic Compensation 
Proportionality factor matrix



Matrix Inversion: The Pseudoinverse
Done via Singular Value Decomposition



Matrix Inversion: The Pseudoinverse
Regularisation Parameter

● Our matrix M is ill-conditioned i.e has a high condition number
● This is a measure of the sensitivity in the output  to changes and errors in the input 
● Condition number is also given by the ratio of the largest to smallest singular value

● If there is a small σi, M will be almost singular and therefore difficult to invert
● We use Tikhonov regularisation to increase numerical stability

● Results in a less accurate pseudoinverse, but improves computational ease 



A suitable regularisation parameter is required to create a compromise 
between finding an accurate pseudoinverse, and reducing the impact of 
errors on our calculations.  

Created a simulation to compare these two 
factors and aim to minimise them both.

This gave an optimal r = 2.036, where β = 10r. 
Ultimately, this needs to be verified 
experimentally.

Matrix Inversion: the Pseudoinverse
Choosing the right Regularisation Parameter



● Design a feedback loop to actively cancel magnetic noise based on 
principles of control theory.

● A general feedback loop will include:
○ y(t)- Measured output value of this quantity
○ r(t) - Target for our controlled quantity
○ e(t) - Error given by r(t) - y(t)
○ K(t)- Control Law
○ u(t) - Response to control law
○ G(t)- System

Feedback Loops and Control Theory
Overview



To reduce the error, a PID control law is implemented:

P- Proportional Control, Corrects for current error

I- Integral Control, Uses cumulative value of the errors

D-Derivative Control, Predicts future trend of error 

Feedback Loops and Control Theory
PID control



● We update the current in each coil 
according to our PI control law

● Each coil has its own PI tuning parameters
● No derivative control - D increases noise

Experiment and Method



● Find optimal tuning 
parameters

● Choose appropriate 
SAMPLE_CLOCK_RATE 
and SAMPLE_MULTI_READ

Experiment and Method



Results
Magnetic Field Lock

Visualisation of PI 
control for locking to a 
target magnetic field

(μT)



● Clear reduction in noise 
below 1 Hz. At 0.1 Hz, the 
noise is reduced by a factor 
of 13 with cancellation

● We see a bump at around 4 
Hz, this is the upper limit to 
which we can cancel.

Results
Bartington



● Looking now at internal 
noise

● Some QuSpins see 
improvements while 
others don’t.

● Ratios at 0.1 Hz range 
from reductions of 0.80 to 
3.1 with cancellation

● Little correlation between 
QuSpin position and 
effect of cancellation

Impact of Active Cancellation on QuSpin Noise Spectra
Results
QuSpins



QuSpin Cancellation Ratio 
at 0.1 Hz

1 3.1

2 1.3

3 0.89

4 0.80

5 1.26

6 1.29

ResultsResults
QuSpins



 

Improvements & Next Steps

● Extend the setup to multiple detectors and 
coils

● Include a system that automatically finds the 
PF matrix

● Include gradient coils to produce specific 
gradients

Source: https://doi.org/10.1140/epjc/s10052-021-09298-z



Thank You



● Generate a vector of K random magnetic field 
values, 

●  Use M-1 to calculate 
● We use Γ as a proxy cost function for the input 

variations

● R is a measure of how well the cancellation works, 
with R = 0 being perfect cancellation

Regularisation Parameter simulation



Γ and R were normalised to [0,1], and 
then we aimed to minimise them 
simultaneously.

This was achieved by summing R and Γ 
for each element in BRand, and then 
finding the r value corresponding to the 
minimum.

Varying the number of elements in BRand 

had little impact on the optimal value of r

 

Regularisation Parameter simulation


