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Introduction:  

The accurate measurement of the electron Electric Dipole Moment (eEDM) stands as a pivotal task. An 
integral challenge in this pursuit has been the magnetic noise detected by the Quspins housed inside the 
magnetic shielding. While this noise impedes our ability to achieve a smaller systematic error, it also 
offers an exciting opportunity to innovate and implement novel techniques for noise reduction. Our 
initial approach leveraging Independent Component Analysis (ICA) yielded suboptimal signal 
decomposition outcomes. Subsequent investigations employing machine learning methodologies for 
blind source separation further elucidated the inherent complexities and challenges of the task. Given 
these outcomes, our focus shifted to dynamic compensation techniques, presenting a promising 
pathway for noise reduction. This guide will detail our systematic exploration and findings in dynamic 
compensation 

 

What to do before you start reading the rest of this guide:  

Read:    The design of the n2EDM experiment https://doi.org/10.1140/epjc/s10052-021-09298-z 

Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment 
spectrometer at the Paul Scherrer Institute https://doi.org/10.1063/1.4894158  

Feedback for physicists: A tutorial essay on control, John Bechhoefer (First 7 Pages) 

 

Make sure that you understand:  

Singular Value Decomposition 

The Moore-Penrose Pseudoinverse 

Tikhonov regularization and condition number 

Control theory, especially PID control & feedback 

The important files that you will need are in OneNote at UltracoldEDM -> UROP2023 -> Important Stuff 

Experimental Setup 

A list of equipments we used for the dynamic compensation system: 

One Bartington Mag-03 Magnetometer 

One lab built bipolar amplifier (BOP) 

One NI DAQ board 

One Desktop(Ybfultracold) 

https://doi.org/10.1140/epjc/s10052-021-09298-z
https://doi.org/10.1063/1.4894158


Several cables 

One oscilloscpe 

One signal generator 

 

 

Fig.1 The lab built Bop 

 

Fig.2 The bipolar amplifier is water cooled and is controlled by the switch on the right, flat is off 

 



Fig.3 We added a resistor on the wire connecting from the bipolar amplifier output to the coil to 
measure the current through the coil. Note that you need two BNCs and you should measure their 

voltage difference in an oscilloscope to read the correct voltage, otherwise it is not grounded properly 

 

 

Fig.2 The Uedm Mu-metal shield and compensation coils 

 

 

 The Bipolar Amplifier is connected to the analog output of the DAQ Board  
 The Bartington is connected to the analog input of the DAQ Board 
 We used Bartington 1 for our project 
 We used the signal generator as a clock which is connected to the DAQ Board 



 

Fig.3 The dynamic compensation process flow chart 

List of softwares: 

NIMAX: we used it to check if the if the clock(signal generator) is working properly 

 

Fig. NIMAX interface, select the board you are connecting your clock to and press “Test Panels” 

 



Fig. NIMAX Test Panels, go to “Count I/O” and change the mode to “Edge Counting” and select the 
channel that you connected your clock to, then press “start” 

 

QZFM: This is used to start the QuSpins 

 

Fig. The QZFM interface. To start the Quspins, turn on all the switches first, then open the software and 
press “Auto Start” and wait until heating is complete, then press “X, Y, Z”, “Dual Axis” and we set our 

gain to “3X”. Then press “Field Zero” and wait until B field measurements are constant, after which press 
“Calibrate” which alters temperature slightly to test stability, all values should be close to 1 pF or under. 

If you wish to see the fields, you can click “PRINT ALL ON” to view the signals.  

 

Signal Express: we used this software to take data for both the QuSpins and the Bartington 

 

Fig. The Signal Express interface. To acquire data, hover yout cursor to the box on the left and right click, 
then go to Acquire Signals -> DAQmx Acquire -> Analog Input -> Voltage. After that you can add channels 



by pressing the blue “+” button and choose the channel that you wish to add. You can also adjust the 
sampling rate in “Timing Settings”. To save signals, right click and the same location and go to Load/Save 

Signals -> Analog Signals -> Save to ASCII/LVM. After that you can go to “File settings” on the right and 
change the export file type to “Generic ASCII (.txt)” and you should also change the time axis preference 

to “Relative Time”. We take data for 10 minutes by clicking the arrow next to “Run” and clicked on 
“Configure Run” and ticked “For 600 Seconds” before clicking “Run”. Your data will save automatically to 

the file path you specified one it’s done.  

 

VisionStudio 2019: This is the software we used to launch and edit the Magnetic Field Lock software.  

 

Fig. Vision Studio interface, open the software and open EDMSuite.Sln, then hover on “Build” and press 
“Configuration Manager”. After you have configured the projects, press “Clean Solution” then press 

“Build Solution” then press the “Start” Button on the menu bar to launch.  

 

Fig. The Configuration Manager,  Make sure that you tick the correct projects to build.  



 

Fig. The Magnetic Field Lock interface 

 

Methodology 

Theory 

Each fluxgate detector(j in total) has a linear response to current changes in each of the k coils. 
Proportionally factor matrix defined as: 

 

We find the factors by passing different currents in one coil and measure how the output voltage of 
each detector changes. Repeat that for all of the coils and find the corresponding gradients of best fit 
lines gives you the PF matrix.  

The compensation current is calculated by inverting the PF matrix 

 

You may notice that the PF matrix may not be a square matrix, hence we will need the Moore-Penrose 
pseudoinverse: 

  

 

 



Data Taking 

Try to send different currents to one of the coils and measure the output voltage response of one of the 
detectors. Find the gradient of the best fit line, and that will be one matrix element of your 
proportionality matrix. After making the correct scaling , and repeating over all coil-detector 
combinations, you will get the proportionality matrix with units nT/A.  

 

 

 

Fig.4 The PF Matrix, here we have 6 coils and 6 detectors(each Bartington measures 3 axes) 



 

Fig.5 The absolute PF Matrix Heatmap 

 

 

 

 

 



The	need	for	regularisa0on	for	the	inverse	problem.	

	

Condi0on	Number	–	this	is	a	measure	of	the	sensi0vity	to	changes	in	the	unput	and	their	effect	on	
the	output.	A	low	condi0on	number	means	that	small	fluctua0ons	in	the	currents	leads	to	small	
fluctua0ons	in	the	field	calculated	while	a	high	condi0on	number	means	small	changes	lead	to	large	
changes.	(This	can	be	seen	as	a	mapping	that	is	no	longer	smooth,	and	therefore	can	create	
undesirable	jumps	in	the	Bk	calculated.	(Note	that	when	we	say	fluctua0ons	here,	we	mean	changes	
and	varia0ons	in	the	currents	not	due	to	our	changing	of	them).	

Condi0on	number	is	important	for	us,	as	M	is	likely	to	be	ill-condi0oned	(high	condi0on	number)	due	
to	a	large	ra0o	between	its	largest	and	smallest	elements.	The	condi0on	number	can	be	formally	
given	by:	

The	ra0o	of	the	largest	to	smallest	singular	values:	!(#)  =  !1!"	
(σi	are	the	singular	values	of	M,	where	they	are	ordered	monotonically	decreasing	σ1	>	σ2	>…>	σn)	

Also:	!(#)  =  ‖#‖(#†(	(Where	M-dagger	is	the	Moore-Penrose	Pseudoinverse).	

An	infinite	condi0on	number	means	that	the	matrix	is	non-inver0ble.	A	high	condi0on	number	
means	that	inversion	is	computa0onally	difficult.		

This	is	easiest	to	see	in	terms	of	the	singular	values.	If	there	is	a	small	singular	value,	M	will	be	close	
to	singular	and	therefore	difficult	to	invert.	From	the	SVD	of	M,	consider	the	elements	(Σ)jj	=	σj,	then	
the	elements	of	Σ-1,	which	cons0tutes	M-1,	are	given	by	1/	σj.	and	hence	will	blow	up	as	σi	->	0.	A	
computer	will	not	like	this.	

Tikhonov	Regularisa0on	/	Ridge	Regression.	

For	ill-condi0oned	problems,	regularisa0on	can	be	used	to	improve	numerical	stability	and	
computa0on.	

The	general	matrix	inversion	problem	can	be	cast	as: )*+ ‖#, −  .‖22 (Minimising the Euclidean norm squared, just a general least-squares problem) We can modify this by adding an additional term to the minimisation. )*+ ‖#, −  .‖22  +  ‖Γ,‖22 Γ is a Tikhonov matrix which is often chosen to be a scalar multiple of the Identity matrix (We use Γ = βI.  The SVD now results in Σ$$−1 = 1σ# ⟶ σ#σ#2+β2. This will result in a less accurate pseudoinverse. (i.e M x M-dagger will be further away from the identity matrix, and so our calculated current to account for a given deviation in the magnetic Xield will be less accurate and cancelling it out. A suitable regularisation parameter, β, is required to compromise between the two terms in the modiXied minimisation problem. This can be tested experimentally, and seeing what value of β gives the best results.   We replace β with 10r, as r is on a nicer scale to work with (see later) 



We made a simulation to see if we could predict what would be a good parameter choice.  One common method, though not one we used (but is of a similar style) is the L-curve method.  This involves a log-log plot of the two terms in the modiXied equation ()for different values of r and taking a value that corresponds to the “corner” of the “L” shape. 

 
This	aims	to	minimise	them	both	simultaneously.		 
Our	simula0on	uses	proxy	cost	func0ons	for	these	two	compe0ng	factors.		

	
First,	we	simulate	a	set	of	30	(variable)	random	magne0c	fields,	Brand	(normally	distributed	about	the	
same	values	that	we	measure	in	the	lab).	For	a	range	of	values	of	r,	we	use	our	M	and	find	the	
regularised	pseudoinverse.	We	use	this	to	find	our	vector	of	correc0on	currents,	Isim.	

For	a	metric	of	the	current	term	in	(),	we	use	the	rms	of	ISim.	

` = abc d e,*+,-(f)g./
0=2 	

(6	is	used	as	that	is	the	number	of	coils)	

We	want	to	minimise	Γ.	

For	a	metric	for	the	first	term,	we	introduce:	h3∗ = h35678 + d #3$$ ⋅ j$9:;(k)	
This	is	a	measure	of	how	well	the	inverse	works,		

	



l = a bm dn.*<=>?o.@
*=2 	

l∗ = abm dn.*∗ o.@
*=2 	

	

p = l∗l 	

Where	R	=	0	means	perfect	cancella0on.		

We	normalised	both	Γ	and	R	to	the	unit	interval	using	min-max	normalis0on	(just	a	linear	scaling)	

Plo`ng	these	for	each	value	of	B:	

		

There	is	one	line	of	each	colour	for	each	set	of	random	magne0c	field	values	(n	=	30	here).	

We	wanted	to	minimise	these	simultaneously.	We	did	this	by:	For	each	itera0on,	n,	we	summed	the	
normalised	Γ	and	R	for	each	value	of	r	(Has	the	same	effect	as	averaging	over	the	value	for	the	nth	
set).	We	took	the	value	of	r	corresponding	to	the	minimum	of	these	sums.	This	gave	us	r	=	2.036.		

Taking	a	greater	value	for	n	gave	the	same	mean,	and	the	graphs	were	similar,	but	just	larger	
“bulges”	where	the	values	R	and	Γ	spread.		

Ul0mately,	we	can	only	verify	the	results	and	predic0ons	from	the	simula0ons	with	experiment.	
Once	fully	running	(with	6	coils	and	more	magnetometers	etc).	It	would	be	best	to	try	running	the	PI	
loop	with	matrix	elements	found	with	different	regularisa0on	parameters,	and	see	which	has	the	
best	improvements.	This	will	allow	us	to	see	if	regularisa0on	is	actually	needed	(which	we	an0cipate	
should	be,	but	can	not	verify	this	yet)	and	how	to	find	the	best	parameter.	
	
	

	



Control	Theory	and	PI	Loops	

Reading	“Feedback	for	Physicists”	will	give	the	main	points	to	understand.	

Ul0mately,	we	want	to	be	able	to	use	the	magne0c	field	measurements,	use	our	matrix	inversion	to	
find	a	current	required	for	a	certain	magne0c	field,	and	to	send	a	determined	current	to	cancel	out	
these	magne0c	fields.	We	want	to	be	able	to	run	this	con0nuously	while	the	experiment	would	be	
running,	in	order	to	reduce	the	magne0c	noise	during	the	experiment.	

	

	 Comparing	our	experiment	to	
a	general	feedback	loop.	

	

○	r(t)	-	Target	for	our	controlled	quan0ty	
(BTarget)	

○y(t)-	Measured	output	value	of	this	
quan0ty	-	BRead	

○	K(t)-	Control	Law	(Coils	outpu`ng	a	
certain	current)	

	○	G(t)-	System	(Our	magnetometer	array)	

○	e(t)	-	Error	given	by	r(t)	-	y(t)	–	
equivalent	to	ΔI	or	ΔB	(With	matrix	inversion,	these	become	interchangeable)	

○	u(t)	-	Response	to	control	law	(See	below)	

PID	Controller	

q(r) = sA ⋅ t(r) + s: ⋅ u t(v)t
0  xv + s8 ⋅ xt(r)xr  	

Our	control	law	determines	what	signal	we	need	to	output	to	correct	for	the	error.	

There	are	3	parts	to	a	PID	controller:	propor0onal,	integral,	deriva0ve	(hence	PID).	These	act	in	
different	ways	to	reduce	the	error.	“Propor0onal”	is	used	to	directly	correct	for	the	error	by	linearly	
altering	the	output	reading	so	that	it	will	match	the	target	and	the	error	will	vanish.	However,	
eventually	the	error	will	become	too	small,	and	the	error	will	fail	to	reduce	any	further;	this	is	why	
the	“Integral”	is	needed.	As	the	error,	and	hence	propor0onal	term,	become	small	and	sta0onary,	the	
integral	term	will	con0nue	to	grow	to	account	for	these	residual	errors.	This	will	be	sufficient	to	
reduce	the	error	to	effec0vely	0.	The	deriva0ve	term	acts	differently,	as	this	is	uses	the	rate	of	change	
of	the	error	to	an0cipate	how	it	will	change,	and	can	therefore	act	“early”	to	reduce	this.		

Kp,	Ki	,	and	Kd	are	tuning	parameters	which	are	selected	to	give	the	best	response.	These	will	depend	
on	the	system,	and	are	manually	changeable.		

j$7 = s$D ⋅ Δj$7 + s$E ⋅ d Δj$F7
F=0 	



This	is	the	PI	control	law	applied	to	our	experiment.	This	updates	the	current	elements	Ij	for	the	nth	
itera0on	of	the	loop.	Each	coil	will	have	its	own	PI	parameters.	There	is	no	deriva0ve	term	here	as	it	
is	not	useful	when	dealing	with	noise.	The	deriva0ve	is	used	to	predict	future	trends,	but	the	
deriva0ve	is	not	representa0ve	of	the	future	of	the	error	as	the	deriva0ve	of	the	noise	is	omen	not	
smooth.	The	integral	is	now	a	sum,	as	our	data	is	discretely	sampled.	ΔI	is	our	error	here,	which	is	
equivalent	to	the	measured	ΔB.	

Choosing	PI	Parameters	

We	determined	these	manually,	though	there	are	methods	which	should	also	provide	suitable	
values.	We	did	not	inves0gate	these	methods	as	we	wanted	to	inves0gate	and	understand	physically	
the	impact	of	different	parameter	values.	When	more	coils	are	implemented,	these	may	be	
necessary.		

For	manual	selec0on,	we	needed	to	see	what	values	would	give	the	“best”	response.	The	FieldLock	
Program	creates	an	app	where	the	PID	parameters	can	be	altered	easily,	and	we	can	see	the	

devia0on	of	the	magne0c	field,	as	well	as	the	voltage	output	from	the	DAQ2	board	to	the	coil.(P,I,D	
are	KP,	KI,	and	KD,	respec0vely.	

	Firstly,	it	is	best	to	set	I	to	0	(D	will	always	be	0	for	us)	and	
alter	this	un0l	we	see	a	suitable	response	which	returns	to	
a	low	devia0on	quickly,	without	oscilla0ng	about	the	
setpoint.		We	changed	the	target	on	the	program	by	
several	hundred	nT	and	looked	at	the	response.	

We	found	P	=	1.3	to	be	a	good	value,	though	there	will	
likely	be	a	slight	improvement	in	the	range	1.2	–	1.5	

We	then	added	an	I	term,	again	aiming	to	reduce	the	
oscilla0ons	amer	changing	the	target.	The	devia0on	graph	
looked	like	classical	cri0cal	dampening,	which	is	ideal.	We	
found	5	to	be	a	good	value	for	I.	Again,	there	was	a	fair	

range	of	suitable	values.	It	may	be	best	to	take	data	while	using	different	values	of	I	to	see	if	a	
par0cular	value	is	significantly	beper,	or	if	there	is	any	real	importance	within	a	certain	range.		



One	important	indicator	to	see	if	the	cancella0on	was	working	in	real	0me	was	to	look	at	the	two	
graphs	on	the	program.	If	the	cancella0on	is	poor,	they	will	almost	mirror	each	other	perfectly,	
whereas	for	good	cancella0on,	the	voltage	graph	will	vary	but	the	devia0on	graph	will	be	a	lot	more	
stable	around	0.	Another	test	to	see	the	effect	of	cancella0on	is	to	place	a	metal	object,	like	a	phone,	
next	to	the	Bar0ngton	and	see	how	well	the	system	reacts.		

	

Methods	like	the	“Ziegler–Nichols	method”	give	a	more	automated	approach	to	find	tuning	
parameters	based	on	proper0es	of	the	response	like	the	oscilla0on	period	and	decay	0me	of	the	
output	readings.		

Each	coil	will	need	its	own	tuning	parameters,	something	that	we	have	not	inves0gated.	We	would	
expect	that	each	coil	will	have	similar,	or	in	an	idealised	case	iden0cal,	P	and	I	values.	We	have	tested	
finding	parameters	with	one	coil	and	one	sensor,	so	ideally	this	could	be	repeated	for	each	coil	and	
that	will	be	sufficient.	We	are	unsure	however	if	it	may	become	harder	if	we	have	mul0ple	coils	
running	at	the	same	0me,	and	if	they	do	work	cohesively	as	they	should	do.	It	may	be	difficult	to	see	
if	the	parameters	are	good,	as	the	effect	may	be	more	pronounced	for	certain	sensors	more	than	
others.	Ul0mately,	trying	each	coil	separately	should	be	the	best	way	to	start	this.		

	

EDMFieldLock	(Mainform.cs)	

This	is	the	c#	file	for	running	the	PID	program	on	the	ultracold	machine.	It	needs	to	be	built	with	
“SharedCode”	and	“BufferClassicHardware”.		

Important	parts	of	code	for	running	and	edi0ng	

	

FIELD_PER_VOLT_INPUT	–	The	bar0ngton	magnetometers	give	a	voltage	output	reading,	which	we	
calculate	the	magne0c	field	reading	from	with	the	known	calibra0on	1V	=	10,000	nT.	

SAMPLE_CLOCK_RATE	–	This	is	the	frequency	at	which	the	system	will	update	

SAMPLE_MULTI_READ	–	This	is	the	number	of	samples	taken	in	one	batch	of	data	(i.e	in	the	0me	
given	by	1/	SAMPLE_CLOCK_RATE)	We	take	several	samples	in	each	0me	period	and	average	over	
these.	This	will	reduce	the	impact	of	high	frequency	noises,	which	will	be	averaged	out	here	as	it	acts	



on	a	much	smaller	0mescale.	This	gives	an	effec0ve	maximum	cutoff	frequency	of	
SAMPLE_CLOCK_RATE	/	SAMPLE_MULTI_READ.		

	

GUI_UPDATE_EVERY	-If	you	mul0ply	this	by	SAMPLE_MULTI_READ	and	divide	by	
SAMPLE_CLOCK_RATE	you	get	the	GUI	update	interval	in	seconds.	

LOCK_UPDATE_EVERY	-This	is	how	omen	the	lock	is	updated	in	terms	of	SAMPLE_MULTI_READs	
(same	idea	as	GUI	update	interval	above)	

OUTPUT_LIMIT_LO	=	0;																

OUTPUT_LIMIT_HI	=	5;																

OUTPUT_ZERO	=	2.5;	 	 	 	 	 	

The	above	3	constants	determine	the	range	of	voltages	to	be	output	by	the	DAQ2	board.	We	have	a	
2.5V	DC	offset	and	can	go	between	0-5	V.	These	are	limits,	and	if	crossed	the	program	will	change	the	
setpoint	value	in	order	to	prevent	problems	with	the	hardware.	

	

setpoint	–		

lockOutput	–		

propor0onalGain	–	P	tuning	parameter	

integralGain	–	I	tuning	parameter	

deriva0veGain	–	D	tuning	parameter	

-The	3	above	parameters	have	methods	to	be	manually	changed	in	the	GUI	

lastDevia0on	–	the	error	read,	this	will	update	in	each	itera0on	

lastOutput	–	the	previous	Voltage	output,	will	update	in	each	itera0on.	

M	–	This	is	our	Matrix	element.	As	we	only	have	1	coil	and	1	sensor,	it	is	just	a	scalar,	and	the	inverse	
is	simply	the	reciprocal.		

currentVoltage	–	this	is	the	calibra0on	we	find	between	the	output	Voltage	from	the	DAQ	board,	and	
the	current	produced	in	the	coils	(This	takes	into	account	the	affect	of	the	gain	on	the	BOP	etc)	The	
program	works	in	terms	of	Voltage,	rather	than	current	which	we	have	been	using	so	far	but	they	are	
effec0vely	interchangeable	terms.		



	

	
	

This	method	uses	the	PID	controller	to	update	the	voltage	output	required.		

meanDevia0on	uses	the	average	of	the	elements	in	the	group	created	from	SAMPLE_MULTI_READ	
and	then	uses	our	propor0onality	factor	and	other	calibra0ons	(The	calibra0on	of	the	Bar0ngton	
Voltage	reading	to	the	magne0c	field	is	already	used	elsewhere	in	the	code).	

We	have	commented	out	d	as	it	wasn’t	used,	but	keeping	it	at	0	will	have	the	same	effect.	

This	is	all	equivalent	to	 j$7 = s$D ⋅ Δj$7 + s$E ⋅ d Δj$F7
F=0  

	

The	following	methods	are	for	configuring	hardware	and	being	able	to	read	in	and	out	of	the	
correct	channels	on	the	DAQ	board.	

	 	

This	searches	the	ClassicBufferHardware	file	for	an	input	channel	called	“bfieldFeedbackOutput”	and	
will	use	this	to	send	out	the	required	current/voltage.	



	

This	does	the	same,	but	for	the	inputs	to	the	daq	board.	“bFieldFeedbackInput”	will	be	used	for	the	
data	read	into	the	program.	“bFieldFeedbackClock”	is	needed	for	a	counter	for	the	program.	The	
clock	on	the	computer	isn’t	accurate	enough	for	this,	so	other	hardware	counters	are	used.	

BufferClassicHardware	

This	contains	methods	to	configure	the	inputs	and	outputs	on	the	DAQ	board.	

	

These	are	the	necessary	lines	for	the	PID	controller.	

The	first	line	adds	an	input	channel	called	“bFieldFeedbackInput”,	which	it	located	on	usbDAQ1	
(hardware	board)	at	posi0on	AI1	(Analog	Input	1)	(The	final	argument	relates	to	the	method	of	data	
acquisi0on).	The	other	lines	work	similarly.	

For	increasing	the	number	of	coils	and	magnetometers,	it	is	necessary	to	add	more	lines	of	code	like	
these,	an	output	channel	for	each	coil,	and	an	input	channel	for	each	magnetometer.	Then	the	
methods	in	EDMFieldLock	will	need	modifying	to	include	reading	data	from	each	input,	and	
outpu`ng	a	certain	voltage	for	each	coil.	Each	coil	will	have	its	own	PID	parameters.	Ul0mately,	the	
program	should	read	in	K	field	readings,	and	each	of	the	J	PID	loop	will	use	these	and	output	to	the	
jth	coil.	Addi0onally,	the	propor0onality	factor	matrix	needs	to	be	implemented	into	the	code.	Our	
algorithm	for	this	is	wripen	in	Python.	It	may	be	easier	to	just	manually	copy	across	the	found	M-1	

into	the	c#	file,	or	just	replicate	it	(limited	c#	knowledge	so	unsure).	The	rest	of	the	code	should	
follow	from	the	above,	with	lots	of	replica0on	and	indexing/loops	to	ensure	each	PID	loop	receives	
the	“right”	informa0on	i.e	the	correct	matrix	elements	for	each	meanDevia*on	for	each	coil.	

Explaining	the	rest	of	the	code	

The	rest	of	the	code	revolves	around	taking	the	data	and	ge`ng	it	to	a	state	which	can	be	used	for	
the	PID	loop.	The	code	also	produces	a	GUI	of	the	devia0on	of	the	field	from	the	target,	as	well	as	
the	voltage	output.	I	will	skip	over	the	blatantly	obvious	methods.	



	

	

UpdateGUI	–	updates	the	graphs	on	the	GUI	using	the	new	values	of	the	devia0on	and	output	
voltage.	

This	takes	the	reading	from	the	Analog	Input	and	takes	the	average.	It	creates	a	star0ng	setpoint	for	
the	program	based	on	the	ini0al	background	reading.	This	value	can	be	manually	altered	in	the	
textbox	on	the	GUI.	

This	takes	a	set	of	data	points	corresponding	to	the	
value	of	SAMPLE_MULTI_READ.	It	then	con0nues	

the	counter	un0l	it	gets	to	the	next	0me	at	which	it	should	resume	sampling.	

	



These	take	the	data	and	put	into	an	array	so	that	it	can	be	used	for	the	PID	and	ploped	in	the	GUI.	
The	2nd	block	here	uses	our	calibra0on	from	the	Bar0ngton	voltage	reading	to	the	magne0c	field	it	
detects.	

	

This	is	the	same	as	the	Ini0aliseSetPoint	method,	but	can	be	implemented	at	any	0me	when	the	
program	is	running,	i.e	the	user	can	write	into	the	textbox	on	the	GUI	and	update	this	value.	

	

	

	

	

	

	

	

	

Amer	the	PID	part	of	the	code,	each	0me	the	voltage	updates	accordingly,	the	code	checks	that	this	
won’t	exceed	any	voltage	limita0ons	put	in	place.	If	not,	it	con0nues	as	normal	and	repeats.	If	there	
is	a	problem,	it	will	reset	the	setpoint	to	a	value	that	won’t	results	in	the	voltage	leaving	its	bounds	
limits.	

	

Under	this	tab,	there	is	the	code	for	producing	the	GUI.	Ideally,	this	can	be	modified	to	include	the	
devia0on	at	each	Bar0ngton,	and	the	voltage	output	to	each	coil.	


