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Abstract—The mercury yellow doublet has been found and
measured using a modified Fourier transform interferometer.
The wavelengths of the doublet are 5.769 ± 0.002nm and
5.790 ± 0.004nm. The interferograms of the mercury green
line and the yellow doublet are processed and corrected, which
allowed the reconstruction of the yellow peaks through the fast
Fourier transform algorithm. The wavelengths are determined
through curve fitting using a Gaussian.

I. INTRODUCTION

Fourier transform spectroscopy is a technique for measuring
light spectra based on coherence [1]. A mercury discharge
lamp is used as the light source in a Fourier transform
spectrometer. The beamsplitter splits the light emitted from the
mercury lamp to two mirrors (M1 and M2): one stationary
and one that is moved by a stepper motor with an unknown
pattern of movement. The lights then reflect back from the
mirrors and reach the detector. An interference pattern can be
observed if the difference in distance , x, between the distance
from M1 to the beamsplitter and M2 to the beamsplitter
is within coherence length of the light source. The light
detector detects the interference pattern which is the Fourier
transformation of the wave function of the light source. Re-
applying the Fourier transform on the interference pattern will
reconstruct the wave function hence giving the spectrum of
the light source. By adding an additional beamsplitter, detector
and two filters(green and yellow), the systematic errors of the
interferometer can be corrected by stretching and shrinking
the x-position of each point for the green line, which can be
used, together with the cubic spline for the yellow doublet
interferogram, to reconstruct the yellow doublet.

II. THEORY

A. Fourier Transform

The Fourier transform converts signals from their current
domain to a frequency domain, which can also be reversed.
The transform of a time domain signal is given by:

f̃(ω) =

∫ ∞

−∞
f(t)e−i2πωxdt (1)

It transforms a integrable function f : R. The Fourier
transform of a signal that consists of two frequencies will
result in a frequency domain which reflects that spectrum
of two frequencies. Fig.1 demonstrates the two signals both
separately and superposed as an interference pattern. It also
shows the Fourier transform of the signal which is what is

expected for the yellow doublet. The discrete Fourier transform
computes the Fourier transform of a discrete sequence. The
discrete Fourier transform can transform N complex num-
ber in sequence xn = x0, x1, ..., xN−1 to another sequence
Xk = X0, X1, ..., XN−1 expressed as [2]:

Xk =

N−1∑
n=0

xn · e− i2π
N kn (2)

Fig. 1. The Fouier transform of a two-frequency signal: the upper time
domain plot shows two separate sinusoidal signals and the lower time domain
plot shows their superposition; the frequency domain plot shows the Fourier
transform of the signal.

In this investigation, the Fast Fourier Transform algorithm
form the SciPy library is used as it significantly reduces
computation time. The computational complexity of the DFT
is O(n2) while that for the FFT is O(nlog(n)) [3]. The
difference in complexity has a great impact for computation
time as N is large in this investigation.

B. The Uncertainty Principle

The statistical interpretation for the Fourier transform of
wavefunctions convey the uncertainty principle. Let f(t) be a
normalized Gaussian wavefunction of the form:

f(t) =
1

τ
√
2π

e−
t2

2τ2 , −∞ < t < ∞ (3)

Let f̃ be the Fourier transform of the wavefunction of the
form:

f̃(ω) =
1√
2π

e−
τ2ω2

2 (4)

The intensity distribution of f(t) in time domain is given by
|f |2, which is also a Gaussian. Similarly the frequency domain
has an intensity distribution of |f̃ |2. In the above example the
bandwidth for t and ω are inversely related, which gives [4]:



∆ω∆t = 1 (5)

The value of 1 is specific to the normalized Gaussian; any
wavefunction f(t) will have a ∆ω∆t product. Therefore, a
signal that is narrow in the time domain must have a greater
spread in the frequency domain and vice versa.

III. METHOD

A. Experimental Setup

Fig. 2 shows the experimental setup of a modified Fourier
transform spectrometer. M1 is a mirror that is fixed in position
whereas M2 is connected to a lever which is connected to
a stepper motor [5]. By entering different commands in the
terminal, M2 will be able to move for different distances at
different velocities. The yellow filter is a Thorlabs FB580-10
Bandpass Filter with a central wavelength (CWL) of 580 ±
2nm and a full width at half maximum (FWHM) of 10±2nm.
The green filter is a Thorlabs FL543.5 laser line filter with a
CWL of 543.5 ± 2nm and a FWHM of 10 ± 2nm [6]. A
Fourier transform spectrometer is chosen due to the Fellgett
advantages. Unlike conventional grating spectrometers, each
scan performed by a Fourier transform spectrometer receives
information of the entire source spectrum. Moreover, its ability
perform microsampling and to obtain a high signal-to-noise
ratio makes it a suitable instrument for this investigation [1].

Fig. 2. Modified Fourier transform spectrometer, the red arrows indicate light
paths

B. Data-taking

Before executing a command in the terminal, it is necessary
to ensure that a interference pattern can be observed by
intercepting the light between the two beamsplitters with a
piece of paper, and the position of M2 should be approximately
at the null point. This must be done using the blue LED
first and then switching to a white LED when an interference
pattern is observed using the blue LED. The blue LED has a
longer coherence length as the bandwidth of it is significantly
smaller than that of the white LED. Hence the interference
pattern, which is its Fourier transformation, will have a larger
coherence length than that of a white LED. The range of the
scan is then determined and M2 will be moved to the starting

position to start the scan. The rate of data collection can be
chosen from the terminal; a sampling rate of 500 Hz is chosen
for this Investigation.

C. Correcting the Spectrum

Knowing that the wavelength for the green line in the mer-
cury spectrum is 546nm, the distance between zero crossing
points in the interferogram for the mercury spectrum with
a green filter could be stretched and shrank. The distance
between two zero crossings remains 273nm throughout the
entire spectrum, this width corresponds to half of the green line
wavelength. The new positions for the corrected x coordinates
are expressed by:

xcorr = Lcorr +
λtrue

λmeasured
(xuncorr − L) (6)

Where xcorr is the corrected x coordinate, Lcorr is the cor-
rected x coordinate of the previous point, λtrue and λmeasured

are the true and measured wavelengths for the mercury green
line, xuncorr is the current uncorrected x coordinate and L
is the previous uncorrected x coordinate. Although the data
was collected at 500 Hz, an average needs to be taken every
10 points as the mercury discharge lamp is running on A
alternative current. Taking a binned average can reduce the
noise measured by the detectors. Since the interferograms
were taken at discrete intervals, the exact values of the zero
crossings for the mercury green line are not given in the
data. Instead, linear interpolation is used to approximate the
position of the zero crossings by locating the two points near
the zero crossing and taking their mid point. After correction,
the distance between the largest and smallest x coordinates are
split into n arbitrarily large (107) discrete segments. The re-
sampled x coordinates and the y coordinates for the mercury
yellow doublet are then input into the Cubic Spline data
interpolator in SciPy. Given a set of n+1 data points (xi, yi)
where xi is monotonically increasing, the spline function S(x)
is a polynomial of degree 3 on each sub interval [xi−1, xi]
and S(xi) = yi for all i = 1, 2, ..., n [7]. The Cubic Spline is
used to re-sample the corrected interferogram for the yellow
doublet with more equidistant points for the Fast Fourier
transformation, which gives the re-constructed spectrum of the
mercury yellow doublet.

IV. RESULTS AND ANALYSIS

A. Position Correction

The M2 mirror moved for approximately 7×10−4m during
the scan, with the null point centered at the midpoint. Fig.
3 shows the interferograms of the mercury yellow doublet
and green line. Both interferograms show a long coherence
length as expected according to Fourier theory. The intensity
for the interferogram of green line is higher than that of the
yellow doublet, which means the intensity of the green line is
higher than the intensity of the yellow doublet in the mercury
spectrum. After correcting the ’x’ coordinates for the green
line interferogram using Eqn. 6 with the reference wavelength
of 546nm, the yellow doublet spectrum is also corrected as



Fig. 3. The interferograms of intensity in arbitrary unit against M2 displace-
ment in meters for mercury yellow doublet (above) and mercury green line
(below).

they share the same x coordinates. Fig. 4 shows the enlarged
yellow doublet interferogram before and after correction, as
well as the change in the x coordinate at each point. Before
correction, the mean distance between two zero crossings,
which is half a wavelength, is 274.01nm and the value after
correction is 272.96nm. The uncertainty of the stepper motor
movement can therefore be estimated from the the difference
in the two values. However, the uncertainty is eliminated by
using the known wavelength of the mercury green line which
corrects the entire interferogram. It can be observed on the
plots that the curves are not completely smooth. This could be
caused by dusts floating in the air of the shaking of the work-
bench, as multiple groups share the same one. Fig. 5 shows
the correction for x against M2 displacement. The reason for
the observed correction pattern is unclear but it is very likely
to be caused by asymmetrical rotation of the motor as the
stepper motor’s error in motion is sinusoidal of a wavelength
of approximately 0.0002m. However, the magnitude of the
correction tends to be larger in the negative direction which
is evidence for another systematic error. Further investigation
could be done on the effects induced by the uncertainty of
the stepper motor motion on the wavelengths of the yellow
doublet obtained. Beyond the stepper motor, the detectors
will also have uncertainties, but since they are 3-d printed
there is no specific specification for their uncertainties and the
uncertainties were not measured in the interest of time as it
has no effect on determining the yellow doublet wavelengths.
The error of the interferometer will not be discussed beyond
this point as the x coordinates have been corrected.

B. Finding the Yellow Doublet

Fig. 6 shows a zoomed-in part of the FFT of the mer-
cury yellow doublet after Fourier transform at 575 − 581nm
wavelength. Each diamond points on the plot represents a
coordinate. although two peaks can be observed in the region
corresponding to the yellow wavelengths that are approxi-
mately 2nm away from each other, the resolution of the plot
is low therefore a curve fitting algorithm needs to be used to
determine the peak as well as the uncertainty. The curvef it

Fig. 4. Above: The intensity in arbitrary unit against M2 displacement in
meters for mercury yellow doublet before correcting the x coordinates.
Below: The intensity in arbitrary unit against M2 displacement in meters
for mercury yellow doublet after correcting the x coordinates (solid line)
and the position correction for x in nanometers against M2 displacement in
meters(dotted line).

Fig. 5. The correction for x in nanometers against M2 displacement in meters
throughout the entire scan.

Fig. 6. The scaled fast Fourier transform of the corrected spectrum for the
yellow doublet and the Gaussian fit of the two peaks.



function from the SciPy library is imported and used to fit
the coordinates. A Gaussian function is used to approximate
the peaks and is defined as:

f(x) = ae−
(x−µ)2

2σ2 (7)

Where a is the height of the peak, µ is the center of the
peak, and σ is the standard deviation. Table 1 shows the four
coordinates used to fit the Gaussian shown in Eqn. 7, table
2 shows the curve fitting constants for both peak 1 and peak
2, and table 3 shows the covariance matrices of the Gaussian
curve fit constants. The wavelength for the first peak of the
yellow doublet is 5.769±0.002nm and the wavelength for the
second peak is 5.790 ± 0.004nm. The curve fitting function
gives the uncertainties for for both µ and σ through covariance
matrices. For the 577nm peak the uncertainties for µ and σ
are 5.722 × 10−21 and 3.032 × 10−21 while for the 579nm
peak the uncertainties are 1.687 × 10−23 and 2.037 × 10−23

respectively. These uncertainties are really small compared to
the value of µ and σ for both peaks, hence they have no
significant effect on their values.

TABLE I
COORDINATES FOR GAUSSIAN FIT

Coordinates

Peak x y

1 5.761123208408274× 10−7 1185554474.416151

1 5.765494318581571× 10−7 2494953092.3225217

1 5.769872066735392× 10−7 8459981371.704788

1 5.774256468001908× 10−7 639985766.5091902

2 5.783045290632048× 10−7 1267325099.8399014

2 5.787449742490869× 10−7 6158429728.143193

2 5.791860908453134× 10−7 7227677970.128546

2 5.796278803882923× 10−7 1856480870.8734212

TABLE II
GAUSSIAN CURVE FIT CONSTANTS

Peak a µ σ

1 8.95678× 109 5.76910× 10−7 2.26475× 10−10

2 8.09908× 109 5.79010× 10−7 3.62100× 10−10

V. CONCLUSION

The measurement of the mercury yellow doublet is obtained
through the use of a modified Fourier transform spectrometer
with a mercury discharge lamp as the light source. the x
coordinates in the green interferogram is then fitted against the
standard mercury green line spectrum of 546nm which also
corrects the yellow doublet interferogram. Next, the corrected
yellow doublet interferogram is re-sampled using the cubic
spline interpolator to increase the number of samples which
are also equidistant in x. The fast Fourier transform is then

performed on the interferogram, which gives the two peaks
corresponding to the yellow doublet after scaling. By fitting a
Gaussian curve on the two peaks, the wavelengths of the yel-
low doublet can be obtained which are 5.769± 0.002nm and
5.790±0.004nm. This concludes the existence of the mercury
yellow doublet as well as their values. Further investigation to
improve the results could be done by investigating the error
induced through linear interpolation in estimating the crossing
points and investigating the error induced through the motion
of the stepper motor.
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