Thermodynamics Snookered

Alan Chirong Li

Abstract—The temperature and pressure of the system are
calculated by the python codes and the effect of different
parameters, such as radii of the balls, are investigated to derive
the underlying thermodynamics laws.

I. INTRODUCTION

In this project python codes are first written to describe
elastic 2-D collisions of one hard sphere in side a circular
container, then it expands to multiple balls interacting with
the container and each other. The accuracy of the simulation
will be tested by comparing the agreement between different
plots and their corresponding theory.

II. THEORY
A. Collision

The equation describing the dynamics of the balls with the
container is[1]:
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Where it accounts for any two balls, including the container.
R, v, 7 are the radius, velocity, and position of the center of a
corresponding ball. If the collision is between a ball and the
container, a minus sign will be used between the radii of the
two balls. Rearranging the equation, we can get an expression
for 4t, the time to collision[1]:
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Where R,v,r are Ry £+ Rs, U7 — s, and 7 — 7 respectively.

When two balls collide, their velocities will change. Using

conservation of momentum, the velocity of the balls after
collision in 2-D can be expressed as[2]:
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Where 71, m1,v7 and 7, mg, Us are the position, mass, and
velocity of the first and second ball respectively.

B. Pressure

In 2-D, the pressure on the container due to the balls is

defined by: rog
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Where P is pressure, I is force, p is momentum, ¢ is time
and A is the circumference of the container. The pressure on
the container due to the balls can be found by calculating the
average change of momentum of the balls that collide with

the container divided by the container circumference.

C. Maxwell Speed Distribution

After starting the simulation, the system will reach equilib-
rium after a certain number of collisions. The distribution of
the speed of the particles when a system reaches equilibrium
is determined by the 2-D Maxwell speed distribution[3]:
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Where s is speed, m is the mass of one ball and kp is the
Boltzmann constant.

P(s< |0 <s+ds)= exp(— )ds (6)

D. Ideal Gas and van der Waal’s Law

The ideal gas equation is:
PV = NkgT (7

Where N is the number of particles. However, the ideal gas law
only holds when the particles have negligible volume(in this
simulation area). So van der Waals law is introduced instead
to obtain more accurate representations of state[1]:
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Where a represents the average attraction between particles.
However, it will not be considered in this simulation. So «
will be 0 and the equation above will be reduced to:
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Where b is a constant related to the volume of the particle.
However b is not equal to the volume of a particle since more
volume need to be subtracted to find the volume remaining for
motion. It turns out that in the extremely dilute state b is four
times the volume of a particle and can fall down to half with
decreasing external volume[4]. Note that since the simulation
is in 2-D, the theoretically value for b will not be four times
ball area. Lastly, the relationship between the average kinetic
energy and the temperature is:
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KE = %RBT (10)

Where n, is the degree of freedom, which is 2 since the
simulation is 2-D.

III. COMPUTING METHODS

In the Ball class, the value for time to collision is calculated.
However, there can be more than one solution and one of the
solutions may be negative. Therefore it is important to filter
out unwanted solutions with if statements. Moreover, due to
floating point error, 0 cannot be used directly in the conditions



and instead /e-8 is used. When calculating the time until the
next collision, all non repeating pairs of balls will be used
to find their non-negative time until next collision by using a
double loop. The value for the shortest time will be updated
when the calculated time to collision is smaller than the current
time until collision. However if the balls are already touching,
they will not be counted. so after counting all the time until
collision, all the balls will be moved by the shortest time until
collision

To make sure that the code will not be changed accidentally,
the position, mass, radius, and velocity parameters are saved
as hidden attributes of the object. The collision algorithm is
optimized such that the balls remain hard spheres even when
multiple balls collide on the container at the same time, as a
list is used to store the index of balls that will collide at the
same time.

In the simulation, the velocity of the balls are randomized
using normal distribution and the kinetic energy hence tem-
perature is varied by changing the o of the distribution.

Beyond that, a method is written to investigate the relation-
ship between the parameter b in Eqn. 9 and the area of a ball
by fitting the constant for different ball radii and plotting a best
fit line. In this plot, the particles are called for each radius, and
the value for b is determined by using the curve fit method
from scipy.optimize. After all the points are plotted, the polyld
method from numpy is used to determine the gradient of the
line.

IV. RESULTS AND ANALYSIS

In Fig.1, the histogram for ball distance between the center
shows that the frequency increased linearly as the distance
increases, and there is a spike at the end due to the container
wall stopping the balls from travelling further. It shows that
the balls distribute randomly after reaching equilibrium as the
histogram demonstrates radial increase. In Fig.2, the histogram
for ball distance ranges from 1 to 19. Since the radii of the
balls are 0.5 the closest the centers can be is 1, similarly
the furthest they can be apart from is 19 since the radius
of the container is 10. The maximum frequency is when the
distance from two balls is around 8, which means that the
distribution is not symmetrical. Since there is no inter-ball
attraction, the probability of finding finding a ball anywhere
in the container should be uniform, apart from along the
wall of the container where the probability is slightly higher
than expected, which can be approximated as point processes.
Furthermore, according to the shape of the distribution, it can
be determined that the distribution of the distance between
centers of particles follow a nearest neighbor distribution[5].
As the ball radius decreases to infinitesimal, the left side of
the histogram also reduce to zero.

Fig. 3 and 4 show the conservation of kinetic energy and
momentum of the system. Both lines are quite stationary with
minimal change in gradient. This is an indication that the
simulation works as expected.

In Fig.5, the gradient of the pressure against temperature
divided by kp is very close to the gradient of the ideal gas line,

which is N/V where N,V are the number of particles and
area of the container respectively. This result is expected as the
system is closer to an ideal gas system as the radius of the balls
decrease. Fig.6(a) shows the same plot but with 4 different
simulations, for each simulation the ball radius is set to a
different value. It can be clearly observed that as the ball radius
increases the gradient for the corresponding line increases,
making it further away from the ideal gas line. The rate of
increase of gradient however, is not directly proportional to
that of the radius. Fig.6(b) shows how the change in radius
affects the gradient difference from the ideal gas line gradient.
The plot shows an exponential increase as radius increases
from 0.2 to 1.0.

In Fig.7, the histogram resembles the shape of the theoreti-
cal speed distribution obtained from Eqn.6. In general, as the
number of collisions increase, the histogram will tend to fit
the Maxwell speed distribution better.

Eqn.9 shows the relationship between pressure and temper-
ature for balls with a finite radius, the constant b is related to
the area of the ball and needs to be solved graphically. Fig.8
shows the plot of b against different ball areas and the gradient
of the fitted line is approximately 2. This result is in accord
with the theory of van der Waals law.

V. CONCLUSION

In this project, the simulation is successfully written and
tested through different plots. In general, the simulation is in
agreement with theory. Beyond the script requirements, the
significance of the distribution of ball distance was explored
and determined and the correlation between the b constant in
van der Waals law and ball area was successfully determined.
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VI. PLOTS FROM SIMULATION
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Fig. 1: The histogram for distance from container center for
30 balls with mass=1, radius=0.5, and average KE=5.21. The
histogram is plotted from 5000 collisions
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Fig. 2: The histogram for distance from the center of each ball
excluding the container for 30 balls with mass=1, radius=0.5,
and average KE=5.21. The histogram is plotted from 5000
collisions

1e-10+1.4843980484e2

4.5

4.0

ol
o

System KE

|y
o

25

20

Time

Fig. 3: The plot for system kinetic energy against time for 30
balls with mass=1, radius=0.1, and average KE=4.95, plotted
from 2000 collisions
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Fig. 4: The plot for system momentum against time for 30
balls with mass=1, radius=0.1, and average KE=4.82, plotted
from 5000 collisions
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Fig. 5: The plot for pressure against temperature divided by the
Boltzmann constant for 30 balls with mass=1 and radius=0.1
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(a) The plot for pressure against temperature divided by the

Boltzmann constant for balls with different radii in each simu-
lation
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Fig. 8: The plot of fitted value of b against ball area
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Fig. 7: The histogram and theoretical distribution of ball speed
for 30 balls with mass=1 and radius=0.1, plotted from 15000
collisions



