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Motivation

Task: Reduce Magnetic noises inside the Mu-metal shield

Challenges:
e [nitial use of Independent Component Analysis (ICA) had suboptimal
results.
e Machine learning for blind source separation is too complicated to
achieve

Current Focus:

e Shift to dynamic compensation techniques.
e Offers a promising direction for reducing noise.



Dynamic Compensation

Overview

Noises are external at sub THz

6 compensation coils, 2 along each axis
Up to 30 fluxgate magnetometers

Pl feedback control loop

Compensating power increases with more
detectors

Implemented with 1 coil and 1 detector
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Dynamic Compensation

Proportionality factor matrix

Each fluxgate sensor has a linear response
to current changes in each of the six coils.
Proportionally factor matrix defined as:
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Dynamic Compensation

Proportionality factor matrix
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Matrix Inversion: The Pseudoinverse
Done via Singular Value Decomposition
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Matrix Inversion: The Pseudoinverse
Regularisation Parameter

e Our matrix M is ill-conditioned i.e has a high condition number
e Thisis a measure of the sensitivity in the output to changes and errors in the input
e Condition number is also given by the ratio of the largest to smallest singular value

On
e Ifthereisasmall g, M will be almost singular and therefore difficult to invert
e We use Tikhonov regularisation to increase numerical stability
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e Resultsin a less accurate pseudoinverse, but improves computational ease




Matrix Inversion: the Pseudoinverse
Choosing the right Regularisation Parameter

A suitable regularisation parameter is required to create a compromise
between finding an accurate pseudoinverse, and reducing the impact of
errors on our calculations.

Regularisation Parameter Optimisation

Created a simulation to compare these two =

factors and aim to minimise them both.
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This gave an optimal r = 2.036, where 3 =10".
Ultimately, this needs to be verified
experimentally.
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Feedback Loops and Control Theory

Overview

e Design a feedback loop to actively cancel magnetic noise based on
principles of control theory.

e A general feedback loop will include:
o y(t)- Measured output value of this quantity
r(t) - Target for our controlled quantity
e(t) - Error given by r(t) - y(t)
K(t)- Control Law
u(t) - Response to control law
G(t)- System

r(t) —.:Q}_C:—e(t)—~ K(t) }»u(t)—’ G *T -0
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Feedback Loops and Control Theory

PID control

To reduce the error, a PID control law is implemented:

u(t) = K, -e(t) + K; - /o e(t)dr + Kg -

P- Proportional Control, Corrects for current error
I- Integral Control, Uses cumulative value of the errors

D-Derivative Control, Predicts future trend of error




Experiment and Method

n
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Experiment and Method

Pl Control Determines Required Current Output

e Find optimal tuning L '
parameters DAQ Board  [|———Output Current—p- ABni{:)?ilf?;r
e Choose appropriate
SAMPLE_CLOCK_RATE Field Readi%g Measured [-Amplified cunemj'
and SAMPLE_MULTI_READ
M:;‘r:‘ei:‘gr::’;er «——Current Generates Magnetic Field—{  Z+ Coil
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Results
Magnetic Field Lock

B
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Set point (nT): 59415 Update Control Parameters: P [1.3 | [5 D |0

Deviation from target field (UT)

Visualisation of Pl
control for locking to a
target magnetic field
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Results
Bartington

Impact of Active Cancellation on Bartington Noise Spectra
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Results
QuSpins

e Looking now at internal
noise

e Some QuSpins see
Improvements while
others don't.

e Ratios at 0.1 Hz range
from reductions of 0.80 to
3.1 with cancellation

e Little correlation between
QuSpin position and
effect of cancellation

Impact of Active Cancellation on QuSpin Noise Spectra
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Results

QuSpins

QuSpin Cancellation Ratio
at 0.1 Hz

1 3.1

2 1.3

3 0.89

4 0.80

5 1.26

6 1.29




Improvements & Next Steps

e Extend the setup to multiple detectors and

s

coils
e Include a system that automatically finds the !‘!H
PF matrix i\\‘g‘
e Include gradient coils to produce specific k\\\‘i‘
gradients E;\ L
h

A



Thank You




Regularisation Parameter simulation

e Generate a vector of Krandom magnetic field
values, ﬁmnd

e UseM'tocalculate 7 sim :
e We usel asa proxy cost function for the input  r(r J éz I5m(r))?
variations j=1
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_ Rand E—

b= \l ? Z(Bk )2 b
k=1

e Risa measure of how well the cancellation works,

with R = O being perfect cancellation
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Regularisation Parameter simulation

[and R were normalised to [0,1], and
then we aimed to minimise them
simultaneously.

This was achieved by summing Rand I
for each element in BR2", and then
finding the r value corresponding to the
minimum.

Varying the number of elements in BRand
had little impact on the optimal value of r
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