
Investigating the Amplitude Dependence of a
Pendulum’s Period

Alan C. Li

Abstract—The amplitude dependence of a pendulum’s period
is investigated by calculating the period of a simple gravity pen-
dulum at different angular displacements. Videos of pendulum
motions are fed to python codes that calculate the periods. A
graph of period against amplitude is plotted and a quadratic
curve is fitted, which has coefficients that are close to zero
(5.3068⇥10�4 and �1.557229⇥10�5 with absolute uncertainties
of 2 ⇥ 10�8 and 5 ⇥ 10�11 respectively.), showing that the
pendulum’s period, as well the the period in simple harmonic
motion, is amplitude independent.

I. INTRODUCTION

Simple gravity pendulums are often used to describe sim-
ple harmonic motions. The first scientific investigation of
pendulums was by Galileo Galilei in 1602[1]. A pendulum
is a weight suspended on a string from a pivot. When a
pendulum is moved sideways from its original position, or
equilibrium position, a restoring force due to gravity will
drive the bob towards the equilibrium position, causing the
pendulum to swing back and forth[2]. The regular motion of
a pendulum made it popular for timekeeping, as the motion
of a pendulum can be approximated to a simple harmonic
motion at small angular displacements. In this experiment, the
effect of amplitude, or angular displacement, change on period
will be investigated by using a simple gravity pendulum. The
experiment is significant in ways that the result validates the
dynamics of simple harmonic motion which are crucial for
research in different fields, such as solar oscillation, where
oscillations of the sun and its nearby stars are measured to
gain understanding of their internal structure[3].

Fig. 1: A Simple Gravity Pendulum with a length l and an
amplitude ✓

II. THEORY

Figure 1 shows the setup of a simple gravity pendulum with
length l and angle ✓ from the vertical. Using Newton’s second
law, we can describe the motion of the bob with mass m by[4]:

�ml✓̈ = mgsin✓ (1)

By using the small angle approximation sin✓ ⇡ ✓, the
pendulum approximates a simple harmonic motion. The period
of an pendulum in simple harmonic motion is dependent only
by its length and the value of g; the equation is given by:

T = 2⇡
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Where T is the period of the pendulum. In this experiment,
python codes that are fed with videos of the pendulum motion
captured by the camera are used to analyze the motion of
the pendulum; the codes calculate the period of the motion
by fitting the data points with a sine curve. However, since
the motion of a simple gravity pendulum is not exactly
simple harmonic, since small angle approximation is used,
the period calculated by the python codes will have increased
uncertainties as amplitude increases even within the small
angle range. Therefore it is necessary to consider the true
period of the simple gravity pendulum without the premise
that its motion is simple harmonic. The true period of an ideal
simple gravity pendulum is given by the Legendre polynomial
solution for elliptic integral[5]:
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The difference between equations (2) and (3) will account for
the increased uncertainties for the value of period as amplitude
increases. A plot of period against amplitude is then plotted
using the same python codes. Simplifying equation (3) by
assuming that the period of a finite amplitude pendulum can
be expressed as a correction to the small amplitude period
gives[4]:

T = T0(1 + ↵✓0 + �✓20) (4)

Where T0 is the small amplitude period, ↵ and � are constants
to be determined using python, and ✓0 is the amplitude of the
oscillation. The equation for period hence becomes a quadratic
function and if ↵ and � are close to zero, the period of a
pendulum will be amplitude independent.



III. METHOD

Figure 2 shows the setup of the experiment. For the python
code to perform best the background should create a sharp
contrast to the pendulum, hence a dark board is used. A thread
of around 30 cm and a brass bob are used for this experiment.
In this experiment the length of the pendulum is fixed(28.7cm).
Before filming starts, the camera will be turned on to check if
the camera view is unobstructed and if the entire trajectory of
the pendulum can be captured. The swinging of the pendulum
is made as horizontally as possible so it has a small movement
in the y direction in the camera view. For each amplitude,
5 oscillations will be recorded. Amplitude is measured by
fixing a protractor on the pendulum clamp so that when the
pendulum is at equilibrium position, the string and the 0�

line superpose. The period will be measured at 4 amplitudes:
5�, 10�, 15�, and 20�. Since small angle approximation is
used to derive equation (2), the maximum amplitude for this
experiment will be 20�. After feeding each video to the python
code, two separate plots will be displayed, showing the fitted
sine function (asin(bx + c) + d, where a, b, c, and d are
constants, see appendix for that section of code) based on the
motion of the pendulum in the x and y direction against time.
The period will also be calculated and is given by 2⇡

b , as well
as its associated uncertainties.

Fig. 2: Experimental Setup – the camera used to record
the video is above the pendulum and parallel to the dark
background

IV. RESULTS

The graphs in figure three show the movements of the
pendulum at different amplitudes in both the x and the y
direction. The amplitude of the sine waves in the y direction
for all amplitudes are small compared to those in the x
direction. This indicates small movements of the pendulum
in the y direction. The sine curves fit the points well as all
the crosses are very close to the curve in all of the graphs.
The amplitude of the sine curves in the x direction reflect
the amplitude at which the bob is being released. As the
amplitude increases, the relative wave height in the x direction
also increases. Moreover, for all curves corresponding the x
direction, there are exactly 5 oscillations, which are consistent
with the video input. The time period can be determined by
measuring the horizontal distance between two consecutive

(a) ✓ = 5� (b) ✓ = 10�

(c) ✓ = 15� (d) ✓ = 20�

Fig. 3: Motions of pendulum in x and y directions for different
amplitudes, plotted with python

Fig. 4: The graph of period against amplitude, plotted with
python

peaks of the sine wave, but the more accurate way is to find
it using the python code which also gives it’s uncertainty.
Figure 4 shows a graph of period against amplitude. The
values of period(see appendix) are from the python code and
the values of uncertainties are from the python code and
equation (3). The values of ↵ and � after curve fitting equation
(4) are 5.3068 ⇥ 10�4 and �1.557229 ⇥ 10�5 with absolute
uncertainties of 2⇥10�8 and 5⇥10�11 respectively. The values
of ↵ and � are not significantly different from zero and the
curve showed relatively small absolute gradient throughout the
graph. Both equation (2) and figure 4 suggest that the period
of a simple gravity pendulum is independent of amplitude. In
this experiment, the pendulum is approximated as a simple
harmonic oscillator by using small angle approximation, so
the experiment also suggests that in simple harmonic motion,
period is independent of amplitude. The factors that could have
affected the result of this experiment include measurements
of the amplitude and the length of the string used for the



pendulum, since the calculation of the uncertainty of period
depend on equation (3). The value of g can also be a potential
source of uncertainty that might have affected the result, since
the earth’s gravitational field is not constant throughout its
surface. The uncertainty induced by the camera is small and
insignificant compared to the uncertainties that preceded.

V. CONCLUSION

The experiment aims to investigate the amplitude depen-
dence of a simple gravity pendulum’s period. Small angles
are used so that the pendulum’s motion can be approximated
as simple harmonic motion. The Legendre polynomial solution
for elliptic integral is used to find uncertainties of the period
due to the fact that the simple gravity pendulum motion is
not perfectly simple harmonic. A camera is used to record all
the oscillations and the 30 fps videos are fed to python codes
that calculate the period. A graph of period against amplitude
is plotted with a quadratic curve fit where ↵ and � are not
significantly different from 0, showing that the pendulum’s
period, as well the the period in simple harmonic motion,
is not amplitude dependent. This investigation showed me
new insights in the underlying significance of the small angle
approximation and the systematic ways of determining one
variable’s dependence of another.
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APPENDIX

The python code for the sine curve fitting of the motion of
the pendulum in the x and y directions

timee = frame/30
def test_func(x, a, b,c,d):

return a * np.sin(b*x+c)+d
params, params_covariance = optimize.curve
_fit(test_func, timee, yy, p0=[300,6,3/4,500])
def test_func2(x, a, b,c,d):

return a * np.sin(b*x+c)+d
params2, params_covariance2 = optimize.cu
rve_fit(test_func2, timee, xx, p0=[10,6,0
.1, 600])

TABLE I: Table of Period and Absolute Uncertainty for
Amplitude

Amplitude
(degree)

Period (s) Total absolute
uncertainty (s)

20 1.086 8⇥ 10�3

15 1.087 5⇥ 10�3

10 1.084 2⇥ 10�3

5 1.0816 5⇥ 10�4


